Beschreibung
Photosynthesis and the complex network within plants is becoming more important than ever, because of the earths changing climate. In addition, the concepts can be used in other areas, and the science itself is useful in practical applications in many branches of science, including medicine, biology, biophysics, and chemistry. This original, groundbreaking work by two highly experienced and well-known scientists introduces a new and different approach to thinking about living organisms, what we can learn from them, and how we can use the concepts within their scientific makeup in practice.
This book describes the principles of complex signaling networks enabling spatiotemporally-directed macroscopic processes by the coupling of systems leading to a bottom-up information transfer in photosynthetic organisms. Top-down messengers triggered by macroscopic actuators like sunlight, gravity, environment or stress lead to an activation of the gene regulation on the molecular level. Mainly the generation and monitoring, as well the role of reactive oxygen species in photosynthetic organisms as typical messengers in complex networks, are described. A theoretical approach according to the principle of synergetics is presented to model light absorption, electron transfer and membrane dynamics in plants. A special focus will be attended to nonlinear processes that form the basic principle for the accumulation of energy reservoirs and large forces enabling the dynamics of macroscopic devices.
This volume is a must-have for any scientist, student, or engineer working with photosynthesis. The concepts herein are not available anywhere else, in any other format, and it is truly a groundbreaking work with sure to be long-lasting effects on the scientific community.
Autorenportrait
Franz-Josef Schmitt,PhD, is a researcher and group leader at Technische Universität Berlin (TU Berlin). Dr. Schmitt holds a series of scientific awards and has authored more than 80 research papers, two patents, one book chapter and 200 presentations that draw upon his research in photosynthesis, nanobiophotonics, environmental spectroscopy and didactics. He is a Coordinating Editor for the journal,Optofluidics, Microfluidics and Nanofluidics, Guest Editor for the journal,NanoPhotoBioSciences, and he is has been heavily involved in academic affairs at TU Berlin in multiple departments and committees.
Suleyman I. Allakhverdiev,PhD, is the Head of the Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, in the Russian Academy of Sciences (RAS), Moscow. He is also the Chief Research Scientist at the Institute of Basic Biological Problems within RAS, a professor at Moscow State University, a professor at the Moscow Institute of Physics and Technology (State University), Head of Bionanotechnology Laboratory at the Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, and an Invited-Adjunct Professor in the Department of New Biology at the Daegu Gyeongbuk Institute of Science& Technology (DGIST), Daegu, Republic of Korea. He is Associate Editor of theInternational Journal of Hydrogen Energy, Associate Editor of the journal,Photosynthesis Research, Section Editor ofBBA Bioenergetics, Associate Editor ofFunctional Plant Biology, Associate Editor ofPhotosynthetica, and a member of the editorial boards of 15 other international journals. He has been the Guest Editor of more than 30 special issuesin peer-reviewed journals, and he has authored or co-authored over 400 papers in various scholarly journals. He has also written eight books and holds six patents. He has been working as a visiting professor in over 30 countries and has presented oral presentations at more than 80 international and national conferences. He has also organized ten international conferences on photosynthesis. and about 40 technical presentations.
Inhalt
Abstract ix
Foreward 1 xi
Foreward 2 xiii
Preface xv
1 Multiscale Hierarchical Processes 1
1.1 Coupled Systems, Hierarchy and Emergence 2
1.2 Principles of Synergetics 12
1.3 Axiomatic Motivation of Rate Equations 15
1.4 Rate Equations in Photosynthesis 19
1.5 Top down and Bottom up Signaling 23
2 Photophysics, Photobiology and Photosynthesis 27
2.1 Light Induced State Dynamics 27
2.2 Rate Equations and Excited State Dynamics in Coupled Systems 41
2.3 Light-Harvesting, Energy and Charge Transfer and Primary Processes of Photosynthesis 64
2.4 Antenna Complexes in Photosynthetic Systems 70
2.5 Fluorescence Emission as a Tool for Monitoring PS II Function 91
2.6 Excitation Energy Transfer and Electron Transfer Steps in Cyanobacteria Modeled with Rate Equations 93
2.7 Excitation Energy and Electron Transfer in Higher Plants Modeled with Rate Equations 105
2.8 Nonphotochemical Quenching in Plants and Cyanobacteria 114
2.9 Hierarchical Architecture of Plants 118
3 Formation and Functional Role of Reactive Oxygen Species (ROS) 123
3.1 Generation, Decay and Deleterious Action of ROS 125
3.2 Monitoring of ROS 137
3.3 Signaling Role of ROS 151
4 ROS Signaling in Coupled Nonlinear Systems 157
4.1 Signaling by Superoxide and Hydrogen Peroxide in Cyanobacteria 158
4.2 Signaling by Singlet Oxygen and Hydrogen Peroxide in Eukaryotic Cells and Plants 163
4.3 ROS and Cell Redox Control and Interaction with the Nuclear Gene Expression 167
4.4 ROS as Top down and Bottom up Messengers 174
4.5 Second Messengers and Signaling Molecules in H2O2 Signaling Chains and (Nonlinear) Networking 191
4.6 ROS-Waves and Prey-Predator Models 192
4.7 Open Questions on ROS Coupling in Nonlinear Systems 196
5 Th e Role of ROS in Evolution 199
5.1 Th e Big Bang of the Ecosphere 200
5.2 Complicated Patterns Result from Simple Rules but Only the Useful Patterns are Stable 201
5.3 Genetic Diversity and Selection Pressure as Driving Forces for Evolution 205
6 Outlook: Control and Feedback in Hierarchical Systems in Society, Politics and Economics 209
Bibliography 213
Appendix 249
Index 259
Informationen zu E-Books
Individuelle Erläuterung zu E-Books