Beschreibung
The present volume is designed as a practical tutorial survey not only for all those interested in bioinstrumentation and its applications, but also as a text for a one-semester upper-division undergraduate course in instrumentation for bioengineering students. A knowledge of basic physics, basic electronics, and mathematics to elementary linear dif ferential equations is assumed. The book is well suited for use as a reference source for all research and clinical workers in the fields of biology, medicine, and the environmental sciences who have an ade quate background in the physical sciences. At the University of Wyo ming, the text is also used for a course in the interdisciplinary program for graduate study in the neurosciences. The philosophy espoused herein is fundamental system analysis and design, rather than detailed discussion of particular devices produced by commercial manufacturers. Equipment-oriented texts, although initially useful, tend to become obsolete rather rapidly. Basic design and analysis techniques change little with time. Discussion has been limited to devices that have found applications in the biological, environmental, and medical fields. Many transducers used in other disciplines have been omitted. It is not the author's intent to produce a compendium of transducer applications, but rather an introduction to those techniques used in the environmental, biological, and medical sciences.
Autorenportrait
InhaltsangabeSection 1: General Systems.- 1. Behavior of Linear Systems.- 1.1. Introduction.- 1.2. Natural System Response of the Second-Order Linear System.- 1.3. Forced Excitation in Linear Second-Order Systems.- 1.4. Time Constants.- 1.5. Transient Response and Risetime.- 1.6. References.- 2. Nonlinear Phenomena.- 2.1. Introduction.- 2.2. Simple Saturation.- 2.3. Hysteresis.- 2.4. Deadband.- 2.5. Harmonic Distortion.- 2.6. References.- Section 2: Transducers.- 3. Principles of Transducer Operation.- 3.1. Introduction.- 3.2. Variable Impedance Devices.- 3.2.1. Variable Resistance Devices.- 3.2.2. Variable Capacitance Devices.- 3.2.3. Variable Inductance, Magnetic, and Faraday-Law Devices.- 3.3. Piezoelectric and Ferroeletric Devices.- 3.4. Thermoelectric Devices.- 3.5. Photoelectric Devices.- 3.5.1. Light Sources.- 3.6. Fiber Optics.- 3.7. Summary.- 3.8. References.- 4. Applications of Transducers.- 4.1. Introduction.- 4.2. Measurement of Displacement.- 4.3. Force Measurements.- 4.3.1. Load Cell.- 4.3.2. Piezoelectric Crystal.- 4.3.3. Variable Resistance Element.- 4.3.4. Further Discussion of Piezoresistive Devices.- 4.4 Temperature Transducers.- 4.5. Fluid Flow Measurements.- 4.6. Measurement of Acceleration, Shock, and Vibration.- 4.7. Electromagnetic Dosimeter.- 4.8. Hall-Effect Devices.- 4.9. Magnetostrictive Devices.- 4.10. Example of a Compound Transducer.- 4.11. References.- 5. Specific Transducers for Medical and Environmental Applications.- 5.1. Introduction.- 5.2. Clinical Pressure Measurements.- 5.3. Blood Cell Counter.- 5.4. Hemoglobinometer (Hematocrit Determination).- 5.5. Oximetry-A Colorimetric Transducer.- 5.6. Piezoelectric Transducers.- 5.7. Clinical Thermometer.- 5.8. Respiratory Monitoring.- 5.9. Environmental Monitoring.- 5.10. Explosive Limit Detector.- 5.11. Measurement of Stack-Plume Effluent.- 5.12. Particle Concentration Meter.- 5.13. Laser Particulate Spectrometer.- 5.14. Portable Drug Detection System.- 5.15. Noise Measurements.- 5.16. Light Measurement.- 5.17. Summary.- 5.18. References.- 6. Electrodes.- 6.1. Introduction.- 6.2. Metallic Electrodes.- 6.3. Electrode Interface Considerations.- 6.4. Microelectrodes.- 6.4.1. Electrode Pulling.- 6.4.2. Pipet Filling.- 6.5. Ion-Selective and Reference Electrodes.- 6.5.1. The Silver-Silver Chloride Electrode.- 6.5.2. Fabrication of Ag-AgCl Electrodes.- 6.5.3. The Calomel Electrode.- 6.5.4. Salt Bridges.- 6.5.5. Reference Potential Cells-Standard Cells.- 6.5.6. Potentiometer for Voltage Measurements.- 6.6. pH Electrodes and pH Meters.- 6.6.1. The Glass Electrode.- 6.6.2. pH Meter.- 6.6.3. Ion-Specific Electrodes.- 6.6.3.1. Calibration Curves.- 6.6.3.2. Use Extension of Existing Electrodes.- 6.6.4. The Glass Membrane Electrode.- 6.6.4.1. Calibration.- 6.6.4.2. Correction for pH.- 6.7. The Oxygen Electrode-A Polarographic Electrode.- 6.8. The CO2 Electrode.- 6.9. Other Techniques.- 6.10. References.- Section 3: Amplifiers and Signal Conditioning.- 7. Preamplifiers for Use with Transducers and Bioelectrodes.- 7.1. Preamplifier Input Considerations.- 7.1.1. Special Considerations for Microelectrodes.- 7.2. Dynamic Response of Preamplifiers.- 7.2.1. Amplifier Gain.- 7.2.2. Bandwidth.- 7.2.3. Gain-Bandwidth Product.- 7.2.4. Transient Response and Risetime.- 7.3. AC-, DC-, and Chopper-Stabilized Preamplifiers.- 7.3.1. AC Preamplifiers.- 7.3.2. DC Preamplifiers.- 7.3.3. DC Offset.- 7.3.4. Chopper Preamplifiers.- 7.4. Active Components in Preamplifiers.- 7.5. Differential Amplifier.- 7.5.1. Common Mode Signal.- 7.6. Operational Amplifiers.- 7.7. Electrometer Preamplifiers.- 7.7.1. Negative-Input-Capacitance Preamplifier.- 7.7.2. General Properties of Some Electrometer Devices.- 7.8. Logarithmic Amplifiers.- 7.9. Feedback.- 7.10. Isolation Networks.- 7.11. Noise.- 7.12. References.- 8. Detectors for Transducer Systems.- 8.1. Variable Capacitance and Inductance Devices.- 8.1.1. Oscillating Detector or Autodyne Circuit.- 8.1.2. The Linear Discriminator Circuit.- 8.2. Unbalanced