0

Separability within commutative and solvable associative algebras. Under conside

Bod
Erschienen am 01.12.2018
CHF 67,00
(inkl. MwSt.)
UVP

Lieferbar in ca. 10-14 Arbeitstagen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783960672210
Sprache: Englisch
Umfang: 260
Auflage: 1. Auflage

Beschreibung

Within the context of the Wedderburn-Malcev theorem a radical complement exists and all complements are conjugated. The main topics of this work are to analyze the Determination of a (all) radical complements, the representation of an element as the sum of a nilpotent and fully separable element and the compatibility of the Wedderburn-Malcev theorem with derived structures. Answers are presented in details for commutative and solvable associative algebras. Within the analysis the set of fully-separable elements and the generalized Jordan decomposition are of special interest. We provide examples based on generalized quaternion algebras, group algebras and algebras of traingular matrices over a field. The results (and also the theorem of Wedderburn-Malcev and Taft) are transferred to non-unitary algebras by using the star-composition and the adjunction of an unit. Within the App endix we present proofs for the Wedderburn-Malcev theorem for unitary algebras, for Taft's theorem on G-invariant radical complements for unitary algebras and for a theorem of Bauer concerning solvable unit groups of associative algebras.

Weitere Artikel aus der Kategorie "Mathematik"

Alle Artikel anzeigen