0

Deadbeat Flux and Torque Control in the Linear, Overmodulation, and Six-Step Regions for Automotive Traction Applications

Erschienen am 19.12.2023, Auflage: 1. Auflage
CHF 77,00
(inkl. MwSt.)
UVP

Lieferbar in ca. 10-14 Arbeitstagen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783844093193
Sprache: Englisch
Umfang: 178
Format (T/L/B): 21.0 x 14.0 cm

Beschreibung

Six-step modulation offers notable advantages over the conventional space vector pulse width modulation (SVPWM) in the flux-weakening region. It enhances the torque capability of the machine and guarantees maximum power performance by maximizing battery voltage utilization. Moreover, it enhances the system efficiency by reducing the phase current required for flux weakening and minimizing switching losses. This thesis introduces an enhanced Deadbeat Flux Vector Controller (DBFC), as a one single control strategy capable of operating interior permanent magnet synchronous machines (IPMSMs) across the entire torque-speed range. Stable operation across the complete voltage modulation range, including SVPWM, overmodulation (I and II), and six-step, is achieved through precise tracking of various flux trajectories. DBFC enables a continuous and seamless transition between the different operating regions, where the modulation index varies linearly with speed in the constant torque region. With this proposed strategy, undesirable torque dynamics, stability problems, and increased computational efforts, associated with the use of multiple control laws, are completely avoided. A time-optimal torque control algorithm is developed to achieve the fastest possible torque response, significantly reducing the settling time, particularly when operating at the voltage limit (six-step). The torque can be controlled with high accuracy and high robustness to machine parameter variations. The proposed controller offers significant advantages over conventional Field-Oriented Control (FOC) and it is simpler to implement. Simulation and experimental results confirm the effectiveness of the proposed strategy, which is tested on a high-power, high-performance automotive traction machine.

Weitere Artikel aus der Kategorie "Technik"

Lieferbar innerhalb 36 Stunden

CHF 28,90
inkl. MwSt.
UVP

Lieferbar innerhalb 36 Stunden

CHF 180,00
inkl. MwSt.
UVP

Lieferzeit unbestimmt

CHF 93,40
inkl. MwSt.
UVP

Lieferbar innerhalb 36 Stunden

CHF 47,30
inkl. MwSt.
UVP

Lieferbar innerhalb 36 Stunden

CHF 57,90
inkl. MwSt.
UVP

Nicht mehr lieferbar

CHF 71,00
inkl. MwSt.
UVP
Alle Artikel anzeigen