Beschreibung
Den Ideenvon I. N. Vekua folgend verknüpft Andreas Künnemann in seiner Arbeit die Fragenach der Lösbarkeit von Randwertproblemen mit Methoden der Funktionentheorie,wobei hier klassische Lösungen im Fokus stehen. Wert gelegt wurde auf einesystematische und nachvollziehbare Gesamtdarstellung der Thematik. Ausgehendvon einem reellen Randwertproblem mit allgemeiner Randbedingung wird der Weghin zu einem komplexen Randwertproblem beschrieben. Dieses wird mithilfekomplexer Integraloperatoren in eine äquivalente Integralgleichung überführtund deren Lösbarkeit im Anschluss untersucht.
Autorenportrait
Andreas Künnemann ist wissenschaftlicherMitarbeiter von Prof. Dr. Friedrich Sauvigny am Lehrstuhl Mathematik,insbesondere Analysis an der Brandenburgischen Technischen UniversitätCottbus-Senftenberg.
Inhalt
Das Poincarésche Randwertproblem.- Komplexe Integraloperatoren und ihre Eigenschaften.- Das Riemann-Hilbert-Vekuasche Randwertproblem.- Komplexe Integralgleichung und Lösbarkeitsaussagen.
Informationen zu E-Books
Individuelle Erläuterung zu E-Books