Beschreibung
Die Generalisierte Gaußsche Fehlerrechnung zielt auf nicht weniger als die rigorose Neufassung der klassischen Gaußschen Formalismen. Die Erkenntnis, dass Messdaten im Allgemeinen jedenfalls nichteliminierbare, nach Betrag und Vorzeichen unbekannte systematische Fehler überlagert sind, besiegelte den Zusammenbruch des Gaußschen Konzeptes.
Die Generalisierte Gaußsche Fehlerrechnung interpretiert systematische Fehler als biaserzeugend. Konsequenterweise unterscheiden sich die wahren Werte der Messgrößen von den Erwartungswerten der Schätzer. Derartige zeitkonstante Differenzen haben Messunsicherheiten zum Tragen zu bringen. Aber auch hinsichtlich der Verarbeitung zufälliger Messfehler weicht der Autor von der konventionellen Vorgehensweise ab. Wie sich zeigen läßt, empfiehlt es sich, die Fortpflanzung zufälliger Messfehler auf die Verteilungsdichte der empirischen Momente zweiter Ordnung zu stützen.
Messunsicherheiten stellen sich als Summen Studentscher Vertrauensbereiche und Worst-Case- Abschätzungen gewisser auf systematische Fehler zurückgehender Terme dar.
Die Messunsicherheiten der Generalisierten Gaußschen Fehlerrechnung zeigen baukastenähnliche, robuste Strukturen, die, wie Datensimulationen belegen, die wahren Werte physikalischer Größen quasisicher lokalisieren.
Autorenportrait
Studium der Physik in Braunschweig und Stuttgart,Diplom in Stuttgart, Doktoranden - Stipendium der Deutschen Forschungsgemeinschaft an der University of Colorado in Boulder, Promotion zum Dr. rer. nat. in Braunschweig, Wissenschaftlicher Assistent und Lehrbeauftragter für Physikalische Chemie und Datenverarbeitung, Wissenschaftlicher Mitarbeiter der Physikalisch-Technischen Bundesanstalt Braunschweig, beauftragt mit Problemen des gesetzlichen Messwesens, der rechnergesteuerten interferrometrischen Längenmessung, des Schätzens von Messunsicherheiten und der Anpassung von Fundamentalkonstanten der Physik. Publikationen und Vorträge über Verfahren zum Auswerten von Messdaten.
Inhalt
Prinzipien der Metrologie.- Werkzeugkasten.- Messunsicherheiten linearer Schätzer.- Verknüpfen von Mitteln.- Lineare Systeme.
Informationen zu E-Books
Individuelle Erläuterung zu E-Books