Beschreibung
Diplomarbeit aus dem Jahr 1995 im Fachbereich Chemie - Physikalische und Theoretische Chemie, Note: 1.0, Bayerische Julius-Maximilians-Universität Würzburg (Physikalisches Institut), Sprache: Deutsch, Abstract: Wohl eines der komplexesten Objekte der modernen Wissenschaft stellt das Gehirn des Menschen dar und ist damit eines der am wenigsten verstandenen Phänomene der Natur. Die Komplexität der synaptischen Vernetzung im Gehirn ermöglicht solch schwer in mathematischer Sprache faßbare Dinge wie Lernen, Wissen, Verstehen, Sprache und Bewußtsein, um nur einige zu nennen. Die Schwierigkeiten bei der Erforschung des Gehirns haben im wesentlichen zwei Gründe. Welche Fragen soll man stellen, d.h. wo nach soll man suchen, wenn man z.B. Bewußtsein erklären möchte und wie kann man die astronomische Anzahl von Neuronen und Synapsen, aus dem sich das Gehirn zusammensetzt, in den Griff bekommen? Die Antworten auf unsere Fragen, die wir eventuell noch nicht richtig gestellt haben, verbergen sich in der Komplexität der Verbindungen der Neuronen untereinander. Neben den klassischen Disziplinen zur Untersuchung des menschlichen Gehirns, wie der Philosophie, Neurologie und vielleicht auch der Theologie, haben sich in jüngster Zeit zwei neue Ansätze entwickelt, die sich aufteilen in die Lager der Künstlichen Intelligenz (AI, articial intelligence) und der künstlichen neuronalen Netze (AN, artificial neural networks. Die AI ist mit ihrem Ansatz bemüht, auf herkömmlichen Computerarchitekturen Wissen zu repräsentieren wobei Wissen sowohl Fakten, wie "Holz brennt", als auch Folgerungen, wie "Häuser bestehen aus Holz. Also: Häuser brennen" mit einschließt. Sie geht davon aus, daß Intelligenz auf Wissen basiert, sowie auf die Fähigkeit, logische Schlußfolgerungen zwischen den Faktenherzustellen. Dazu ist die AI auf große und schnelle Speicher, sowie auf effiziente Suchalgorithmen angewiesen. Die Erforschung künstlicher neuronaler Netze hat das Ziel, reine Erkenntnis über die Arbeitsweise des Gehirns zu gewinnen und damit uns selber besser zu verstehen und in Zukunft die Struktur des Gehirns als neue Rechenarchitektur nachzubilden, mit all den potentiellen Fähigkeiten, die wir selber besitzen. Noch ist dieses Forschungsgebiet jedoch angewiesen auf schnelle herkömmliche Computer, um auf diesen die parallele Arbeitsweise neuronaler Netze zu simulieren. Die Forschung ist damit natürlich den Einschränkungen unterworfen, die heutige Computer mit sich bringen, z.B. mangelnde Geschwindigkeit durch serielle Simulation paralleler Arbeitschritte
Informationen zu E-Books
Individuelle Erläuterung zu E-Books