Preface xiii
1 Phosphorene: A 2D New Derivative of Black Phosphorous 1Lalla Btissam Drissi, Siham Sadki and El Hassan Saidi
1.1 Introduction 1
1.2 Pristine 2D BP 3
1.2.1 Synthesis and Characterization 3
1.2.1.1 Top-Down Approaches 3
1.2.1.2 Bottom-Up Methods 4
1.2.1.3 Geometric Structure and Raman Spectroscopy 4
1.2.2 Physical Properties 5
1.2.2.1 Anisotropic Eectronic Behavior 5
1.2.2.2 Optical Properties 6
1.2.2.3 Elastic Parameters 8
1.2.3 Applications 9
1.2.3.1 Gas Sensors 9
1.2.3.2 Battery Applications 9
1.2.3.3 FETs 10
1.3 Phosphorene Oxides 10
1.3.1 Challenges: Degradation of Phosphorene 11
1.3.1.1 Light Exposure 11
1.3.1.2 Phosphorene vs Air 12
1.3.1.3 Functionalized Phosphorene 12
1.3.2 Half-Oxided Phosphorene 13
1.3.2.1 Electronic Structure 14
1.3.2.2 Optical Response 15
1.3.2.3 Strain Effect 16
1.3.3 Surface Oxidation on Phosphorene 18
1.3.3.1 Optoelectronic Features 18
1.3.3.2 Stress vs Strain 20
1.3.3.3 Thermal Conductivity 21
1.4 Conclusion 22
Acknowledgment 22
References 22
2 Antimonene: A Potential 2D Material 27Shuai Liu, Tianle Zhang and Shengxue Yang
2.1 Introduction 27
2.2 Fundamental Characteristics 29
2.2.1 Structure 29
2.2.2 Electronic Band Structure 30
2.3 Experimental Preparation 30
2.3.1 Mechanical Exfoliation 30
2.3.2 Liquid Phase Exfoliation 32
2.3.3 Epitaxial Growth 35
2.3.4 Other Methods 40
2.4 Applications of Antimonene 40
2.4.1 Nonlinear Optics 40
2.4.2 Optoelectronic Device 42
2.4.3 Electrocatalysis 44
2.4.4 Energy Storage 45
2.4.5 Biomedicine 47
2.4.6 Magneto-Optic Storage 50
2.5 Conclusion and Outlook 50
References 52
3 Synthesis and Properties of Graphene-Based Materials 57U. Naresh, N. Suresh Kumar, D. Baba Basha, Prasun Benerjee, K. Chandra Babu Naidu, R. Jeevan Kumar, Ramyakrishna Pothu and Rajender Boddula
3.1 Introduction 58
3.2 Applications 60
3.3 Structure 62
3.3.1 Graphene-Related Materials 63
3.3.2 Synthesis Techniques 64
3.3.3 Mechanical Exfoliation of Graphene Layers 64
3.3.4 Chemical Vapor Deposition of Graphene Layers 65
3.3.5 Hummer Method of Graphene 65
3.3.6 Plasma-Enhanced Chemical Vapor Deposition of Graphene Layers 65
3.4 Physical Properties 66
3.4.1 Thermal Stability 66
3.4.2 Electronic Properties 67
3.5 Conclusions 68
References 69
4 Theoretical Study on Graphene Oxide as a Cancer Drug Carrier 73Satya Narayan Sahu, Saraswati Soren, Shanta Chakrabarty and Rojalin Sahu
4.1 Introduction 74
4.2 Molecular Interaction of Biomolecules and Graphene Oxide 76
4.2.1 Molecular Interaction of DNA with Graphene Oxide 76
4.2.2 Molecular Interaction of Protein with Graphene Oxide 77
4.3 Computational Method 78
4.4 Results and Discussion 79
4.4.1 Binding Behavior Between Graphene Oxide With Cancer Drugs (5-Flourouracil, Ibuprofen, Camptothecine, and Doxorubicin) 79
4.5 Conclusion 83
References 83
5 High-Quality Carbon Nanotubes and Graphene Produced from MOFs and Their Supercapacitor Application 87Mandira Majumder, Ram B. Choudhary, Anukul K. Thakur, Rabah Boukherroub and Sabine Szunerits
5.1 Introduction 88
5.1.1 The Basics of Metal Organic Frameworks (MOFs) 91
5.2 Carbonization of MOFs 92
5.2.1 Conversion of MOFs Into Carbon Nanotubes (CNTs) 93
5.2.2 MOFs Derived Graphene Like Carbon and Graphene-Based Composites 94
5.2.3 MOFs Precursors for the Preparation of Porous Carbon Nanostructures Other Than Graphene and CNTs 95
5.3 Effect of MOF Pyrolysis Temperature on Porosity and Pore Size Distribution 96
5.4 MOF Derived Carbon as Supercapacitor Electrodes 98
5.5 Conclusions and Perspectives 107
Acknowledgement 108
References 109
6 Application of Two-Dimensional MonoelementsBased Material in Field-Effect Transistor for Sensing and Biosensing 119Tejaswini Sahoo, Jnana Ranjan Sahu, Jagannath Panda, Neeraj Kumari and Rojalin Sahu
6.1 Introduction 120
6.1.1 Classification of 2D Monoelement (Xenes) in the Periodic Table 121
6.1.2 Group III 121
6.1.2.1 Borophene 123
6.1.2.2 Gallenene 123
6.1.3 Group IV 126
6.1.3.1 Silicene 126
6.1.3.2 Germanene 126
6.1.3.3 Stanene 126
6.1.4 Group V 126
6.1.4.1 Phosphorene 126
6.1.4.2 Arsenene 127
6.1.4.3 Antimonene 127
6.1.4.4 Bismuthene 127
6.1.5 Group VI 127
6.1.5.1 Selenene 127
6.1.5.2 Tellurene 128
6.2 Field-Effect Transistor 128
6.2.1 Different Types of Recently Developed Field-Effect Transistors 129
6.2.1.1 Field-Effect Transistors Based on Silicon 129
6.2.1.2 Field-Effect Transistors Based on Carbon Nanotube 129
6.2.1.3 Organic Field-Effect Transistors 130
6.2.1.4 Field-Effect Transistors Based on Graphene 130
6.3 Application of 2D Monoelements in Field-Effect Transistor for Sensing and Biosensing 130
6.3.1 Biosensor 130
6.3.1.1 DNA Sensors 133
6.3.1.2 Protein Sensors 133
6.3.1.3 Glucose Sensor 134
6.3.1.4 Living Cell and Bacteria Sensors 134
6.3.2 Sensor 135
6.3.2.1 Gas Sensor 135
6.3.2.2 pH Sensor 136
6.3.2.3 Metal Ion and Other Chemical Sensors 137
6.4 Conclusions and Perspectives 138
References 139
7 Supercapacitor Electrodes Utilizing Graphene-Based Ternary Composite Materials 149B. Saravanakumar, K. K. Purushothaman, S.Vadivel, A. Sakthivel, N. Karthikeyan and P. A. Periasamy
7.1 Introduction 150
7.2 Charge Storage Mechanism of a Supercapacitor Device 151
7.2.1 Design of a Supercapacitor Electrode 154
7.3 Graphene and its Functionalized Forms 154
7.3.1 Graphene 154
7.3.2 Graphene Oxide 155
7.3.3 Reduced Graphene Oxide 155
7.4 Varieties of Graphene-Based Ternary Composite 155
7.4.1 Graphene-Conducting Polymer-Metal Oxide 156
7.4.1.1 Graphene-PEDOT-Metal Oxide 156
7.4.1.2 Graphene-PANI-Metal Oxide 157
7.4.1.3 Graphene-PPy-Metal Oxide 159
7.4.2 Graphene/Other Carbon/Conducting Polymer 159
7.4.3 Graphene/Other Carbon Material/Metal Oxide 160
7.4.4 Other Graphene-Based Ternary Materials 161
7.5 Conclusion and Future Perspectives 162
References 162
8 Graphene: An Insight Into Electrochemical Sensing Technology 169Anantharaman Shivakumar and Honnur Krishna
8.1 Introduction 170
8.2 Electronic Band Structure of Graphene 172
8.3 Electrochemical Influence of the Graphene Due to Doping Effect 174
8.4 Exfoliation of Graphite: Chemistry Behind Scientific Approach 176
8.5 Electrochemical Reduction of Oxidized Graphene 184
8.6 Spectroscopic Study of Graphene 187
8.7 Biotechnical Functionalization of Graphene 188
8.8 Graphene Technology in Sensors 190
8.8.1 Glucose Sensors 190
8.8.2 DNA and Aptamer Sensors 192
8.8.3 Pollutant Sensors 197
8.8.4 Gas Sensors 200
8.8.5 Pharmaceutical Sensors and Antioxidant Sensors 201
8.9 Conclusion 208
Acknowledgements 210
References 210
9 Germanene 235Mohd Imran Ahamed and Naushad Anwar
9.1 Introduction 236
9.2 Structural Arrangements 239
9.2.1 Elemental Structures 239
9.2.2 Decorated Structures 240
9.2.3 Composite Structures 243
9.3 Fundamental Properties of Germanene 243
9.3.1 Quantum Spin Hall (QSH) Effect 243
9.3.2 Mechanical Properties 245
9.3.3 Thermal Properties 246
9.3.4 Optical Properties 246
9.4 Applications of Germanene 248
9.4.1 Strain-Induced Self-Doping in Germanene 248
9.4.2 In Battery Applications 249
9.4.3 In Electronic Devices 250
9.4.4 Catalysis 250
9.4.5 Optoelectronic and Luminescence Applications 254
9.5 Conclusions 255
References 255
10 2D Graphene Nanostructures for Biomedical Applications 261Kiran Rana, Rinky Ghosh and Neha Kanwar Rawat
10.1 Introduction 261
10.1.1 Synthesis Routes of Graphene 263
10.1.2 Graphene and its Derivatives 263
10.2 Applications of Graphene in Biomedicine 265
10.2.1 Tissue Engineering 265
10.2.1.1 Cartilage Tissue Engineering 266
10.2.2 Bone Tissue Engineering 269
10.2.2.1 Methods of Fracture Repair 269
10.2.2.2 Graphene Used in Bone Tissue Engineering 269
10.2.3 Gene Delivery 271
10.2.4 Cancer Therapy 272
10.2.5 Genotoxicity 273
10.2.6 2D Application of Graphene in Biosensing 274
10.2.7 Prosthetic Implants 275
10.3 Conclusion 277
References 278
11 Graphene and Graphene-Integrated Materials for Energy Device Applications 285Santhosh, G. and Bhatt, Aarti S.
11.1 Introduction 285
11.1.1 Anode Materials for Electrodes 288
11.1.2 Cathode Materials for Electrodes 289
11.2 Graphene-Integrated Electrodes for Lithium-Ion Batteries (LIBs) 290
11.2.1 The Working of LIBs 291
11.2.2 Graphene-Integrated Cathodes 293
11.2.2.1 Graphene/LiFePO4 as Cathode 293
11.2.2.2 Graphene/LiMn2O4 as Cathode 294
11.2.2.3 Graphene-Layered Cathode Material 295
11.2.3 Graphene-Integrated Anodes 296
11.2.3.1 Graphene/Li4Ti5O12as Anode 297
11.2.3.2 Graphene/Si or Ge as Anode 298
11.2.3.3 Graphene/Metal Oxides as Anodes 299
11.2.3.4 Graphene/Sulfides as Anodes 302
11.3 Graphene-Integrated Nanocomposites for Supercapacitors (SCs) 303
11.3.1 Working Mechanism of Supercapacitors 304
11.3.1.1 Electrochemical Double Layer Capacitors (EDLC) 304
11.3.1.2 Pseudo-Capacitors 304
11.3.1.3 Hybrid Supercapacitors 304
11.3.2 Graphene-Integrated Supercapacitors (GSCs) 305
11.3.2.1 Graphene/Organic Material Nanocomposites 306
11.3.2.2 Graphene/Conducting Polymer Nanocomposites 307
11.3.2.3 Graphene/Metal Oxide Nanocomposites 310
11.4 Conclusion 314
References 316
Index 329