Beschreibung
Inhaltsangabe1. K0 of Rings.- 1. Defining K0.- 2. K0 from idempotents.- 3. K0 of PIDs and local rings.- 4. K0 of Dedekind domains.- 5. Relative K0 and excision.- 6. An application: Swan's Theorem and topological K- theory.- 7. Another application: Euler characteristics and the Wall finiteness obstruction.- 2.K1 of Rings.- 1. Defining K1.- 2. K1 of division rings and local rings.- 3. 1 of PIDs and Dedekind domains.- 4. Whitehead groups and Whitehead torsion.- 5. Relative K1 and the exact sequence.- 3. K0 and K1 of Categories, Negative K-Theory.- 1. K0 and K1 of categories, Go and G1 of rings.- 2. The Grothendieck and Bass-Heller-Swan Theorems.- 3. Negative K-theory.- 4. Milnor's K2.- 1. Universal central extensions and H2.- Universal central extensions.- Homology of groups.- 2. The Steinberg group.- 3. Milnor's K2.- 4. Applications of K2.- Computing certain relative K1 groups.- K2 of fields and number theory.- Almost commuting operators.- Pseudo-isotopy.- 5. The +?Construction and Quillen K-Theory.- 1. An introduction to classifying spaces.- 2. Quillen's +?construction and its basic properties.- 3. A survey of higher K-theory.- Products.- K-theory of fields and of rings of integers.- The Q-construction and results proved with it.- Applications.- 6. Cyclic homology and its relation to K-Theory.- 1. Basics of cyclic homology.- Hochschild homology.- Cyclic homology.- Connections with "non-commutative de Rham theory".- 2. The Chern character.- The classical Chern character.- The Chern character on K0.- The Chern character on higher K-theory.- 3. Some applications.- Non-vanishing of class groups and Whitehead groups.- Idempotents in C*-algebras.- Group rings and assembly maps.- References.- Books and Monographs on Related Areas of Algebra, Analysis, Number Theory, and Topology.- Books and Monographs on Algebraic K-Theory.- Specialized References.- Notational Index.